This commit is contained in:
Wojciech Janota 2024-05-09 23:38:38 +02:00
parent 80443b6d0a
commit f7a81bf281
8 changed files with 1398 additions and 29 deletions

View File

@ -1,7 +0,0 @@
class Encoder:
def __init__(self, encoder):
self.encoder = encoder
def train_model(self, dataset):
pass

View File

@ -1,3 +1,32 @@
from keras.models import Sequential, load_model
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
import pandas as pd
class NeuralNetworkEncoder:
def __init__(self):
pass
def __init__(self, internal_activation_function: str, external_activation_function: str, optimizer: str, loss_function: str, image_dimension_x: int, image_dimension_y: int):
self.model = Sequential()
self.model.add(Conv2D(32, (3, 3), activation=internal_activation_function, input_shape=(image_dimension_x, image_dimension_y, 1)))
self.model.add(MaxPooling2D((2, 2)))
self.model.add(Conv2D(64, (3, 3), activation=internal_activation_function))
self.model.add(MaxPooling2D((2, 2)))
self.model.add(Flatten())
self.model.add(Dense(64, activation=internal_activation_function))
self.model.add(Dense((8, 8), activation=external_activation_function))
self.model.compile(optimizer=optimizer, loss=loss_function)
def __init__(self, pretrained_weights_path: str):
self.model = load_model(pretrained_weights_path)
def train(self, train_imageset: pd.DataFrame, train_quantization_dataset: pd.DataFrame, validation_dataset: pd.DataFrame, validation_quantization_dataset: pd.DataFrame, epochs: int, batch_size: int):
self.model.fit(train_imageset, train_quantization_dataset, validation_data=(validation_dataset, validation_quantization_dataset), epochs=epochs, batch_size=batch_size)
def export_weights(self, output_path: str):
self.model.save(output_path)
def evaluate(self, test_imageset: pd.DataFrame, test_quantization_dataset: pd.DataFrame):
return self.model.evaluate(test_imageset, test_quantization_dataset)
def predict_quantization_table(self, imageset: pd.DataFrame):
return self.model.predict(imageset)

View File

@ -1,19 +0,0 @@
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
class RandomForestEncoder:
def __init__(self):
self.engine = RandomForestRegressor(n_estimators=100, max_depth=10)
self.dataset_training_X = None
self.dataset_training_y = None
self.dataset_testing_X = None
self.dataset_testing_y = None
def train_model(self, dataset):
self.dataset_training_X, self.dataset_training_y, self.dataset_testing_X, self.dataset_testing_y = train_test_split(dataset, test_size=0.2)
self.engine.fit(self.dataset_training_X, self.dataset_training_y)
def evaluate_model(self):
return cross_val_score(self.engine, self.dataset_testing_X, self.dataset_testing_y)

View File

@ -32,6 +32,16 @@ class Dataset():
self.dataset_filenames.append(new_filename)
self.dataset_size = counter
def load_prepared_dataset(self):
for filename in os.listdir(self.dataset_path):
if os.path.isfile(file):
counter += 1
else:
continue
file = os.path.join(self.dataset_path, filename)
self.dataset_filenames.append(file)
def __len__(self):
return self.dataset_size

1356
longinus/poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -17,6 +17,8 @@ pillow = "^10.2.0"
scipy = "^1.12.0"
scikit-learn = "^1.4.1.post1"
opencv-python = "^4.9.0.80"
keras = "^3.3.3"
keras-models = "^0.0.7"
[build-system]