This commit is contained in:
Wojciech Janota 2023-11-23 01:22:09 +01:00
parent 7994e2e387
commit fcc756e7ec
11 changed files with 167 additions and 2 deletions

BIN
lab1/dataset_plot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

View File

@ -1,8 +1,160 @@
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
input_data = pd.read_csv("annthyroid_unsupervised_anomaly_detection.csv", sep=";")
print(input_data.head(10))
# deal with missing values
# print all rows with missing values
print("---All rows with missing values---")
print(input_data[ input_data.isna().any(axis=1) ])
# Check for missing values in each column
missing_values = input_data.isnull().sum()
# Filter columns with missing values
columns_with_missing_values = missing_values[missing_values > 0].index
# Print columns with missing values
print("---Columns with missing values---")
print(columns_with_missing_values)
print("Filling column 'on_antithyroid_medication' with mode of this column")
input_data["on_antithyroid_medication"] = input_data["on_antithyroid_medication"].fillna(input_data["on_antithyroid_medication"].mode().iloc[0])
print("Filling column 'pregnant' with mode of this column")
input_data["pregnant"] = input_data["pregnant"].fillna(input_data["pregnant"].mode().iloc[0])
print("Filling column 'thyroid_surgery' with mode of this column")
input_data["thyroid_surgery"] = input_data["thyroid_surgery"].fillna(input_data["thyroid_surgery"].mode().iloc[0])
print("Filling column 'query_hypothyroid' with mode of this column")
input_data["query_hypothyroid"] = input_data["query_hypothyroid"].fillna(input_data["query_hypothyroid"].mode().iloc[0])
print("Filling column 'query_hyperthyroid' with mode of this column")
input_data["query_hyperthyroid"] = input_data["query_hyperthyroid"].fillna(input_data["query_hyperthyroid"].mode().iloc[0])
print("Filling column 'lithium' with mode of this column")
input_data["lithium"] = input_data["lithium"].fillna(input_data["lithium"].mode().iloc[0])
print("Filling column 'TSH' with median of this column")
input_data["TSH"] = input_data["TSH"].fillna(input_data["TSH"].median())
print("Filling column 'T3_measured' with median of this column")
input_data["T3_measured"] = input_data["T3_measured"].fillna(input_data["T3_measured"].median())
print("Filling column 'TT4_measured' with median of this column")
input_data["TT4_measured"] = input_data["TT4_measured"].fillna(input_data["TT4_measured"].median())
print("Filling column 'T4U_measured' with median of this column")
input_data["T4U_measured"] = input_data["T4U_measured"].fillna(input_data["T4U_measured"].median())
print("Filling column 'FTI_measured' with median of this column")
input_data["FTI_measured"] = input_data["FTI_measured"].fillna(input_data["FTI_measured"].median())
print("---Checking after filling N/A values---")
# Check for missing values in each column
missing_values = input_data.isnull().sum()
# Filter columns with missing values
columns_with_missing_values = missing_values[missing_values > 0].index
# Print columns with missing values
print("---Columns with missing values (after filling)---")
print(columns_with_missing_values)
# print all rows with missing values
print("---Rows with missing values (after filling)---")
print(input_data[ input_data.isna().any(axis=1) ])
columns_with_continuous_attributes = ["TSH", "T3_measured", "TT4_measured", "T4U_measured", "FTI_measured"]
# normalize columns with continuous attributes
print("---Normalizing continuous attributes---")
scaler = MinMaxScaler()
input_data[columns_with_continuous_attributes] = scaler.fit_transform(input_data[columns_with_continuous_attributes])
# detecting the outliers based on columns with continuous attributes
Q1 = input_data[columns_with_continuous_attributes].quantile(0.25)
Q3 = input_data[columns_with_continuous_attributes].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 2.5 * IQR
upper_bound = Q3 + 2.5 * IQR
found_outliers = ( (input_data[columns_with_continuous_attributes] < lower_bound) | (input_data[columns_with_continuous_attributes] > upper_bound) ).any(axis=1)
print("---Detected outliers based on continuous attributes---")
print(input_data[found_outliers])
color_mapping = {
"o": "red",
"n": "green"
}
ax = input_data.plot(x="TSH", y="T3_measured", kind="scatter", c=input_data["Outlier_label"].map(color_mapping), colormap="viridis")
legend_config = [plt.Line2D([0], [0], marker="o", color="w", markerfacecolor=color, markersize=10, label=label) for label, color in color_mapping.items()]
ax.legend(handles=legend_config, title="Categories: is outlier? \n(o - outlier, n - not an outlier)")
plt.title('Correlation between TSH, T3 markers \nand outlier classification')
plt.savefig('tsh_t3_plot.png')
ax = input_data.plot(x="TSH", y="TT4_measured", kind="scatter", c=input_data["Outlier_label"].map(color_mapping), colormap="viridis")
legend_config = [plt.Line2D([0], [0], marker="o", color="w", markerfacecolor=color, markersize=10, label=label) for label, color in color_mapping.items()]
ax.legend(handles=legend_config, title="Categories: is outlier? \n(o - outlier, n - not an outlier)")
plt.title('Correlation between TSH, TT4 markers \nand outlier classification')
plt.savefig('tsh_tt4_plot.png')
ax = input_data.plot(x="TSH", y="T4U_measured", kind="scatter", c=input_data["Outlier_label"].map(color_mapping), colormap="viridis")
legend_config = [plt.Line2D([0], [0], marker="o", color="w", markerfacecolor=color, markersize=10, label=label) for label, color in color_mapping.items()]
ax.legend(handles=legend_config, title="Categories: is outlier? \n(o - outlier, n - not an outlier)")
plt.title('Correlation between TSH, T4U markers \nand outlier classification')
plt.savefig('tsh_t4u_plot.png')
ax = input_data.plot(x="TSH", y="FTI_measured", kind="scatter", c=input_data["Outlier_label"].map(color_mapping), colormap="viridis")
legend_config = [plt.Line2D([0], [0], marker="o", color="w", markerfacecolor=color, markersize=10, label=label) for label, color in color_mapping.items()]
ax.legend(handles=legend_config, title="Categories: is outlier? \n(o - outlier, n - not an outlier)")
plt.title('Correlation between TSH, FTI markers \nand outlier classification')
plt.savefig('tsh_fti_plot.png')
dataset_cleaned = input_data[~found_outliers]
ax = dataset_cleaned.plot(x="TSH", y="T3_measured", kind="scatter", c=dataset_cleaned["Outlier_label"].map(color_mapping), colormap="viridis")
legend_config = [plt.Line2D([0], [0], marker="o", color="w", markerfacecolor=color, markersize=10, label=label) for label, color in color_mapping.items()]
ax.legend(handles=legend_config, title="Categories: is outlier? \n(o - outlier, n - not an outlier)")
plt.title('Correlation between TSH, T3 markers \n and outlier classification (after outliers cleaning)')
plt.savefig('tsh_t3_plot_outliers_removed.png')
ax = dataset_cleaned.plot(x="TSH", y="TT4_measured", kind="scatter", c=dataset_cleaned["Outlier_label"].map(color_mapping), colormap="viridis")
legend_config = [plt.Line2D([0], [0], marker="o", color="w", markerfacecolor=color, markersize=10, label=label) for label, color in color_mapping.items()]
ax.legend(handles=legend_config, title="Categories: is outlier? \n(o - outlier, n - not an outlier)")
plt.title('Correlation between TSH, TT4 markers \nand outlier classification (after outliers cleaning)')
plt.savefig('tsh_tt4_plot_outliers_removed.png')
ax = dataset_cleaned.plot(x="TSH", y="T4U_measured", kind="scatter", c=dataset_cleaned["Outlier_label"].map(color_mapping), colormap="viridis")
legend_config = [plt.Line2D([0], [0], marker="o", color="w", markerfacecolor=color, markersize=10, label=label) for label, color in color_mapping.items()]
ax.legend(handles=legend_config, title="Categories: is outlier? \n(o - outlier, n - not an outlier)")
plt.title('Correlation between TSH, T4U markers \nand outlier classification (after outliers cleaning)')
plt.savefig('tsh_t4u_plot_outliers_removed.png')
ax = dataset_cleaned.plot(x="TSH", y="FTI_measured", kind="scatter", c=dataset_cleaned["Outlier_label"].map(color_mapping), colormap="viridis")
legend_config = [plt.Line2D([0], [0], marker="o", color="w", markerfacecolor=color, markersize=10, label=label) for label, color in color_mapping.items()]
ax.legend(handles=legend_config, title="Categories: is outlier? \n(o - outlier, n - not an outlier)")
plt.title('Correlation between TSH, FTI markers \nand outlier classification (after outliers cleaning)')
plt.savefig('tsh_fti_plot_outliers_removed.png')
# rate the outlier detection based on the Outlier_label column
false_positives_count = input_data[(found_outliers) & (input_data["Outlier_label"] == "n")]["Outlier_label"].count()
false_negatives_count = dataset_cleaned[dataset_cleaned["Outlier_label"] == "o"]["Outlier_label"].count()
true_postitives_count = input_data[(found_outliers) & (input_data["Outlier_label"] == "o")]["Outlier_label"].count()
true_negatives_count = dataset_cleaned[dataset_cleaned["Outlier_label"] == "n"]["Outlier_label"].count()
precision = true_negatives_count/(true_negatives_count + false_negatives_count)
recall = true_negatives_count/(true_negatives_count + false_positives_count)
print(f"""
---Classification of the outlier detection---
(we treat negative prediction as our target)
True positives: {true_postitives_count}
False positives: {false_positives_count}
True negatives: {true_negatives_count}
False negatives: {false_negatives_count}
Precision: {precision}
Recall: {recall}
""")

View File

@ -1,6 +1,19 @@
contourpy==1.2.0
cycler==0.12.1
fonttools==4.45.0
joblib==1.3.2
kiwisolver==1.4.5
matplotlib==3.8.2
numpy==1.26.2
packaging==23.2
pandas==2.1.3
Pillow==10.1.0
pyparsing==3.1.1
python-dateutil==2.8.2
pytz==2023.3.post1
scikit-learn==1.3.2
scipy==1.11.4
six==1.16.0
sklearn==0.0.post11
threadpoolctl==3.2.0
tzdata==2023.3

BIN
lab1/tsh_fti_plot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 103 KiB

BIN
lab1/tsh_t3_plot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

BIN
lab1/tsh_t4u_plot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

BIN
lab1/tsh_tt4_plot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB