Lab3
This commit is contained in:
parent
d24a3848a2
commit
c7f7890971
3
lab3/.idea/.gitignore
generated
vendored
Normal file
3
lab3/.idea/.gitignore
generated
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
# Default ignored files
|
||||||
|
/shelf/
|
||||||
|
/workspace.xml
|
30
lab3/.idea/csv-editor.xml
generated
Normal file
30
lab3/.idea/csv-editor.xml
generated
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="CsvFileAttributes">
|
||||||
|
<option name="attributeMap">
|
||||||
|
<map>
|
||||||
|
<entry key="/Automobile_Data_Cleaned.csv">
|
||||||
|
<value>
|
||||||
|
<Attribute>
|
||||||
|
<option name="separator" value="," />
|
||||||
|
</Attribute>
|
||||||
|
</value>
|
||||||
|
</entry>
|
||||||
|
<entry key="/Automobile_data.csv">
|
||||||
|
<value>
|
||||||
|
<Attribute>
|
||||||
|
<option name="separator" value="," />
|
||||||
|
</Attribute>
|
||||||
|
</value>
|
||||||
|
</entry>
|
||||||
|
<entry key="/world_alcohol.csv">
|
||||||
|
<value>
|
||||||
|
<Attribute>
|
||||||
|
<option name="separator" value="," />
|
||||||
|
</Attribute>
|
||||||
|
</value>
|
||||||
|
</entry>
|
||||||
|
</map>
|
||||||
|
</option>
|
||||||
|
</component>
|
||||||
|
</project>
|
6
lab3/.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
6
lab3/.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
<component name="InspectionProjectProfileManager">
|
||||||
|
<settings>
|
||||||
|
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||||
|
<version value="1.0" />
|
||||||
|
</settings>
|
||||||
|
</component>
|
10
lab3/.idea/lab3.iml
generated
Normal file
10
lab3/.idea/lab3.iml
generated
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<module type="PYTHON_MODULE" version="4">
|
||||||
|
<component name="NewModuleRootManager">
|
||||||
|
<content url="file://$MODULE_DIR$">
|
||||||
|
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
||||||
|
</content>
|
||||||
|
<orderEntry type="inheritedJdk" />
|
||||||
|
<orderEntry type="sourceFolder" forTests="false" />
|
||||||
|
</component>
|
||||||
|
</module>
|
7
lab3/.idea/misc.xml
generated
Normal file
7
lab3/.idea/misc.xml
generated
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="Black">
|
||||||
|
<option name="sdkName" value="Python 3.11 (lab3)" />
|
||||||
|
</component>
|
||||||
|
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (lab3)" project-jdk-type="Python SDK" />
|
||||||
|
</project>
|
8
lab3/.idea/modules.xml
generated
Normal file
8
lab3/.idea/modules.xml
generated
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="ProjectModuleManager">
|
||||||
|
<modules>
|
||||||
|
<module fileurl="file://$PROJECT_DIR$/.idea/lab3.iml" filepath="$PROJECT_DIR$/.idea/lab3.iml" />
|
||||||
|
</modules>
|
||||||
|
</component>
|
||||||
|
</project>
|
6
lab3/.idea/vcs.xml
generated
Normal file
6
lab3/.idea/vcs.xml
generated
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="VcsDirectoryMappings">
|
||||||
|
<mapping directory="$PROJECT_DIR$/.." vcs="Git" />
|
||||||
|
</component>
|
||||||
|
</project>
|
62
lab3/Automobile_Data_Cleaned.csv
Normal file
62
lab3/Automobile_Data_Cleaned.csv
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
index,company,body-style,wheel-base,length,engine-type,num-of-cylinders,horsepower,average-mileage,price
|
||||||
|
0,alfa-romero,convertible,88.6,168.8,dohc,four,111,21,13495.0
|
||||||
|
1,alfa-romero,convertible,88.6,168.8,dohc,four,111,21,16500.0
|
||||||
|
2,alfa-romero,hatchback,94.5,171.2,ohcv,six,154,19,16500.0
|
||||||
|
3,audi,sedan,99.8,176.6,ohc,four,102,24,13950.0
|
||||||
|
4,audi,sedan,99.4,176.6,ohc,five,115,18,17450.0
|
||||||
|
5,audi,sedan,99.8,177.3,ohc,five,110,19,15250.0
|
||||||
|
6,audi,wagon,105.8,192.7,ohc,five,110,19,18920.0
|
||||||
|
9,bmw,sedan,101.2,176.8,ohc,four,101,23,16430.0
|
||||||
|
10,bmw,sedan,101.2,176.8,ohc,four,101,23,16925.0
|
||||||
|
11,bmw,sedan,101.2,176.8,ohc,six,121,21,20970.0
|
||||||
|
13,bmw,sedan,103.5,189.0,ohc,six,182,16,30760.0
|
||||||
|
14,bmw,sedan,103.5,193.8,ohc,six,182,16,41315.0
|
||||||
|
15,bmw,sedan,110.0,197.0,ohc,six,182,15,36880.0
|
||||||
|
16,chevrolet,hatchback,88.4,141.1,l,three,48,47,5151.0
|
||||||
|
17,chevrolet,hatchback,94.5,155.9,ohc,four,70,38,6295.0
|
||||||
|
18,chevrolet,sedan,94.5,158.8,ohc,four,70,38,6575.0
|
||||||
|
19,dodge,hatchback,93.7,157.3,ohc,four,68,31,6377.0
|
||||||
|
20,dodge,hatchback,93.7,157.3,ohc,four,68,31,6229.0
|
||||||
|
27,honda,wagon,96.5,157.1,ohc,four,76,30,7295.0
|
||||||
|
28,honda,sedan,96.5,175.4,ohc,four,101,24,12945.0
|
||||||
|
29,honda,sedan,96.5,169.1,ohc,four,100,25,10345.0
|
||||||
|
30,isuzu,sedan,94.3,170.7,ohc,four,78,24,6785.0
|
||||||
|
31,isuzu,sedan,94.5,155.9,ohc,four,70,38,11095.0
|
||||||
|
32,isuzu,sedan,94.5,155.9,ohc,four,70,38,11095.0
|
||||||
|
33,jaguar,sedan,113.0,199.6,dohc,six,176,15,32250.0
|
||||||
|
34,jaguar,sedan,113.0,199.6,dohc,six,176,15,35550.0
|
||||||
|
35,jaguar,sedan,102.0,191.7,ohcv,twelve,262,13,36000.0
|
||||||
|
36,mazda,hatchback,93.1,159.1,ohc,four,68,30,5195.0
|
||||||
|
37,mazda,hatchback,93.1,159.1,ohc,four,68,31,6095.0
|
||||||
|
38,mazda,hatchback,93.1,159.1,ohc,four,68,31,6795.0
|
||||||
|
39,mazda,hatchback,95.3,169.0,rotor,two,101,17,11845.0
|
||||||
|
43,mazda,sedan,104.9,175.0,ohc,four,72,31,18344.0
|
||||||
|
44,mercedes-benz,sedan,110.0,190.9,ohc,five,123,22,25552.0
|
||||||
|
45,mercedes-benz,wagon,110.0,190.9,ohc,five,123,22,28248.0
|
||||||
|
46,mercedes-benz,sedan,120.9,208.1,ohcv,eight,184,14,40960.0
|
||||||
|
47,mercedes-benz,hardtop,112.0,199.2,ohcv,eight,184,14,45400.0
|
||||||
|
49,mitsubishi,hatchback,93.7,157.3,ohc,four,68,37,5389.0
|
||||||
|
50,mitsubishi,hatchback,93.7,157.3,ohc,four,68,31,6189.0
|
||||||
|
51,mitsubishi,sedan,96.3,172.4,ohc,four,88,25,6989.0
|
||||||
|
52,mitsubishi,sedan,96.3,172.4,ohc,four,88,25,8189.0
|
||||||
|
53,nissan,sedan,94.5,165.3,ohc,four,55,45,7099.0
|
||||||
|
54,nissan,sedan,94.5,165.3,ohc,four,69,31,6649.0
|
||||||
|
55,nissan,sedan,94.5,165.3,ohc,four,69,31,6849.0
|
||||||
|
56,nissan,wagon,94.5,170.2,ohc,four,69,31,7349.0
|
||||||
|
57,nissan,sedan,100.4,184.6,ohcv,six,152,19,13499.0
|
||||||
|
61,porsche,hardtop,89.5,168.9,ohcf,six,207,17,34028.0
|
||||||
|
62,porsche,convertible,89.5,168.9,ohcf,six,207,17,37028.0
|
||||||
|
63,porsche,hatchback,98.4,175.7,dohcv,eight,288,17,11095.0
|
||||||
|
66,toyota,hatchback,95.7,158.7,ohc,four,62,35,5348.0
|
||||||
|
67,toyota,hatchback,95.7,158.7,ohc,four,62,31,6338.0
|
||||||
|
68,toyota,hatchback,95.7,158.7,ohc,four,62,31,6488.0
|
||||||
|
69,toyota,wagon,95.7,169.7,ohc,four,62,31,6918.0
|
||||||
|
70,toyota,wagon,95.7,169.7,ohc,four,62,27,7898.0
|
||||||
|
71,toyota,wagon,95.7,169.7,ohc,four,62,27,8778.0
|
||||||
|
79,toyota,wagon,104.5,187.8,dohc,six,156,19,15750.0
|
||||||
|
80,volkswagen,sedan,97.3,171.7,ohc,four,52,37,7775.0
|
||||||
|
81,volkswagen,sedan,97.3,171.7,ohc,four,85,27,7975.0
|
||||||
|
82,volkswagen,sedan,97.3,171.7,ohc,four,52,37,7995.0
|
||||||
|
86,volkswagen,sedan,97.3,171.7,ohc,four,100,26,9995.0
|
||||||
|
87,volvo,sedan,104.3,188.8,ohc,four,114,23,12940.0
|
||||||
|
88,volvo,wagon,104.3,188.8,ohc,four,114,23,13415.0
|
|
62
lab3/Automobile_data.csv
Normal file
62
lab3/Automobile_data.csv
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
index,company,body-style,wheel-base,length,engine-type,num-of-cylinders,horsepower,average-mileage,price
|
||||||
|
0,alfa-romero,convertible,88.6,168.8,dohc,four,111,21,13495
|
||||||
|
1,alfa-romero,convertible,88.6,168.8,dohc,four,111,21,16500
|
||||||
|
2,alfa-romero,hatchback,94.5,171.2,ohcv,six,154,19,16500
|
||||||
|
3,audi,sedan,99.8,176.6,ohc,four,102,24,13950
|
||||||
|
4,audi,sedan,99.4,176.6,ohc,five,115,18,17450
|
||||||
|
5,audi,sedan,99.8,177.3,ohc,five,110,19,15250
|
||||||
|
6,audi,wagon,105.8,192.7,ohc,five,110,19,18920
|
||||||
|
9,bmw,sedan,101.2,176.8,ohc,four,101,23,16430
|
||||||
|
10,bmw,sedan,101.2,176.8,ohc,four,101,23,16925
|
||||||
|
11,bmw,sedan,101.2,176.8,ohc,six,121,21,20970
|
||||||
|
13,bmw,sedan,103.5,189,ohc,six,182,16,30760
|
||||||
|
14,bmw,sedan,103.5,193.8,ohc,six,182,16,41315
|
||||||
|
15,bmw,sedan,110,197,ohc,six,182,15,36880
|
||||||
|
16,chevrolet,hatchback,88.4,141.1,l,three,48,47,5151
|
||||||
|
17,chevrolet,hatchback,94.5,155.9,ohc,four,70,38,6295
|
||||||
|
18,chevrolet,sedan,94.5,158.8,ohc,four,70,38,6575
|
||||||
|
19,dodge,hatchback,93.7,157.3,ohc,four,68,31,6377
|
||||||
|
20,dodge,hatchback,93.7,157.3,ohc,four,68,31,6229
|
||||||
|
27,honda,wagon,96.5,157.1,ohc,four,76,30,7295
|
||||||
|
28,honda,sedan,96.5,175.4,ohc,four,101,24,12945
|
||||||
|
29,honda,sedan,96.5,169.1,ohc,four,100,25,10345
|
||||||
|
30,isuzu,sedan,94.3,170.7,ohc,four,78,24,6785
|
||||||
|
31,isuzu,sedan,94.5,155.9,ohc,four,70,38,
|
||||||
|
32,isuzu,sedan,94.5,155.9,ohc,four,70,38,
|
||||||
|
33,jaguar,sedan,113,199.6,dohc,six,176,15,32250
|
||||||
|
34,jaguar,sedan,113,199.6,dohc,six,176,15,35550
|
||||||
|
35,jaguar,sedan,102,191.7,ohcv,twelve,262,13,36000
|
||||||
|
36,mazda,hatchback,93.1,159.1,ohc,four,68,30,5195
|
||||||
|
37,mazda,hatchback,93.1,159.1,ohc,four,68,31,6095
|
||||||
|
38,mazda,hatchback,93.1,159.1,ohc,four,68,31,6795
|
||||||
|
39,mazda,hatchback,95.3,169,rotor,two,101,17,11845
|
||||||
|
43,mazda,sedan,104.9,175,ohc,four,72,31,18344
|
||||||
|
44,mercedes-benz,sedan,110,190.9,ohc,five,123,22,25552
|
||||||
|
45,mercedes-benz,wagon,110,190.9,ohc,five,123,22,28248
|
||||||
|
46,mercedes-benz,sedan,120.9,208.1,ohcv,eight,184,14,40960
|
||||||
|
47,mercedes-benz,hardtop,112,199.2,ohcv,eight,184,14,45400
|
||||||
|
49,mitsubishi,hatchback,93.7,157.3,ohc,four,68,37,5389
|
||||||
|
50,mitsubishi,hatchback,93.7,157.3,ohc,four,68,31,6189
|
||||||
|
51,mitsubishi,sedan,96.3,172.4,ohc,four,88,25,6989
|
||||||
|
52,mitsubishi,sedan,96.3,172.4,ohc,four,88,25,8189
|
||||||
|
53,nissan,sedan,94.5,165.3,ohc,four,55,45,7099
|
||||||
|
54,nissan,sedan,94.5,165.3,ohc,four,69,31,6649
|
||||||
|
55,nissan,sedan,94.5,165.3,ohc,four,69,31,6849
|
||||||
|
56,nissan,wagon,94.5,170.2,ohc,four,69,31,7349
|
||||||
|
57,nissan,sedan,100.4,184.6,ohcv,six,152,19,13499
|
||||||
|
61,porsche,hardtop,89.5,168.9,ohcf,six,207,17,34028
|
||||||
|
62,porsche,convertible,89.5,168.9,ohcf,six,207,17,37028
|
||||||
|
63,porsche,hatchback,98.4,175.7,dohcv,eight,288,17,
|
||||||
|
66,toyota,hatchback,95.7,158.7,ohc,four,62,35,5348
|
||||||
|
67,toyota,hatchback,95.7,158.7,ohc,four,62,31,6338
|
||||||
|
68,toyota,hatchback,95.7,158.7,ohc,four,62,31,6488
|
||||||
|
69,toyota,wagon,95.7,169.7,ohc,four,62,31,6918
|
||||||
|
70,toyota,wagon,95.7,169.7,ohc,four,62,27,7898
|
||||||
|
71,toyota,wagon,95.7,169.7,ohc,four,62,27,8778
|
||||||
|
79,toyota,wagon,104.5,187.8,dohc,six,156,19,15750
|
||||||
|
80,volkswagen,sedan,97.3,171.7,ohc,four,52,37,7775
|
||||||
|
81,volkswagen,sedan,97.3,171.7,ohc,four,85,27,7975
|
||||||
|
82,volkswagen,sedan,97.3,171.7,ohc,four,52,37,7995
|
||||||
|
86,volkswagen,sedan,97.3,171.7,ohc,four,100,26,9995
|
||||||
|
87,volvo,sedan,104.3,188.8,ohc,four,114,23,12940
|
||||||
|
88,volvo,wagon,104.3,188.8,ohc,four,114,23,13415
|
|
104
lab3/main.py
Normal file
104
lab3/main.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import random
|
||||||
|
|
||||||
|
input_data = pd.read_csv('Automobile_data.csv', sep=',')
|
||||||
|
|
||||||
|
print("---First task---")
|
||||||
|
print("First 5 rows:")
|
||||||
|
print(input_data.head(5))
|
||||||
|
print("Last 5 rows:")
|
||||||
|
print(input_data.tail(5))
|
||||||
|
|
||||||
|
print("---Second task---")
|
||||||
|
input_data.replace("?", np.NaN, inplace=True)
|
||||||
|
input_data.replace("N.a", np.NaN, inplace=True)
|
||||||
|
|
||||||
|
numeric_cols = input_data.select_dtypes(include=['number']).columns
|
||||||
|
input_data[numeric_cols] = input_data[numeric_cols].fillna(input_data[numeric_cols].median())
|
||||||
|
|
||||||
|
non_numeric_cols = input_data.select_dtypes(exclude=['number']).columns
|
||||||
|
input_data[non_numeric_cols] = input_data[non_numeric_cols].fillna(input_data[non_numeric_cols].mode())
|
||||||
|
|
||||||
|
input_data.to_csv("Automobile_Data_Cleaned.csv", sep=",", index=False)
|
||||||
|
|
||||||
|
print("---Third task---")
|
||||||
|
|
||||||
|
most_expensive_company = input_data.loc[input_data['price'].idxmax(), 'company']
|
||||||
|
print(f"Most expensive company: {most_expensive_company}")
|
||||||
|
most_expensive_cars = input_data[input_data['price'] == input_data['price'].max()]
|
||||||
|
print("\nThe most expensive cars are:")
|
||||||
|
print(most_expensive_cars[['company', 'price']])
|
||||||
|
|
||||||
|
print("---Fourth task---")
|
||||||
|
toyota_cars = input_data[input_data["company"] == "toyota"]
|
||||||
|
print(toyota_cars)
|
||||||
|
|
||||||
|
print("---Fifth task---")
|
||||||
|
count_group_by_company = input_data.groupby(["company"])["index"].count()
|
||||||
|
print(count_group_by_company)
|
||||||
|
|
||||||
|
print("---Sixth task---")
|
||||||
|
group_by_company = input_data.groupby("company")["price"].idxmax()
|
||||||
|
group_by_company_df = input_data.loc[group_by_company]
|
||||||
|
print(group_by_company_df)
|
||||||
|
|
||||||
|
print("---Seventh task---")
|
||||||
|
group_by_company = input_data.groupby("company")["average-mileage"].mean()
|
||||||
|
group_by_company_df = group_by_company.reset_index()
|
||||||
|
print(group_by_company_df)
|
||||||
|
|
||||||
|
print("---Eigth task---")
|
||||||
|
|
||||||
|
sorted_by_price = input_data.sort_values(by="price", ascending=True)
|
||||||
|
print(sorted_by_price)
|
||||||
|
|
||||||
|
print("---Ninth task---")
|
||||||
|
GermanCars = {'Company': ['Ford', 'Mercedes', 'BMV', 'Audi'], 'Price': [23845, 171995, 135925, 71400]}
|
||||||
|
japaneseCars = {'Company': ['Toyota', 'Honda', 'Nissan', 'Mitsubishi '], 'Price': [29995, 23600, 61500, 58900]}
|
||||||
|
|
||||||
|
german_cars_df = pd.DataFrame(GermanCars)
|
||||||
|
japanese_cars_df = pd.DataFrame(japaneseCars)
|
||||||
|
|
||||||
|
print(german_cars_df)
|
||||||
|
print(japanese_cars_df)
|
||||||
|
|
||||||
|
print("---Tenth task---")
|
||||||
|
|
||||||
|
Car_Price = {'Company': ['Toyota', 'Honda', 'BMV', 'Audi'], 'Price': [23845, 17995, 135925, 71400]}
|
||||||
|
car_Horsepower = {'Company': ['Toyota', 'Honda', 'BMV', 'Audi'], 'horsepower': [141, 80, 182, 160]}
|
||||||
|
|
||||||
|
car_price_df = pd.DataFrame(Car_Price)
|
||||||
|
car_horsepower_df = pd.DataFrame(car_Horsepower)
|
||||||
|
|
||||||
|
merged_df = pd.merge(car_price_df, car_horsepower_df, how="inner", on="Company")
|
||||||
|
|
||||||
|
print(merged_df)
|
||||||
|
|
||||||
|
print("---===Second dataset===---")
|
||||||
|
|
||||||
|
second_dataset = pd.read_csv("world_alcohol.csv", sep=",")
|
||||||
|
|
||||||
|
print("---Eleventh task---")
|
||||||
|
print(second_dataset.sample(n=random.randint(1, 10)))
|
||||||
|
|
||||||
|
print("---Twelfth task---")
|
||||||
|
|
||||||
|
group_by_region = second_dataset.groupby(["WHO region", "Year"])
|
||||||
|
for region, year in group_by_region.groups:
|
||||||
|
if year == 1989:
|
||||||
|
print(group_by_region.get_group((region, year)))
|
||||||
|
|
||||||
|
print("--Thirteenth task---")
|
||||||
|
|
||||||
|
america_1985_data = second_dataset[(second_dataset["WHO region"] == "Americas") & (second_dataset["Year"] == 1985)]
|
||||||
|
print(america_1985_data)
|
||||||
|
|
||||||
|
print("---Fourteenth task---")
|
||||||
|
|
||||||
|
data_14 = second_dataset[(second_dataset["Display Value"] >= 5) & (second_dataset["Beverage Types"] == "Beer")]
|
||||||
|
print(data_14)
|
||||||
|
|
||||||
|
print("---Fifteenth task---")
|
||||||
|
data_wine = second_dataset[(second_dataset["Display Value"] >= 2) & (second_dataset["Beverage Types"] == "Wine")]
|
||||||
|
print(data_wine)
|
101
lab3/world_alcohol.csv
Normal file
101
lab3/world_alcohol.csv
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
Year,WHO region,Country,Beverage Types,Display Value
|
||||||
|
1986,Western Pacific,Viet Nam,Wine,0
|
||||||
|
1986,Americas,Uruguay,Other,0.5
|
||||||
|
1985,Africa,Cte d'Ivoire,Wine,1.62
|
||||||
|
1986,Americas,Colombia,Beer,4.27
|
||||||
|
1987,Americas,Saint Kitts and Nevis,Beer,1.98
|
||||||
|
1987,Americas,Guatemala,Other,0
|
||||||
|
1987,Africa,Mauritius,Wine,0.13
|
||||||
|
1985,Africa,Angola,Spirits,0.39
|
||||||
|
1986,Americas,Antigua and Barbuda,Spirits,1.55
|
||||||
|
1984,Africa,Nigeria,Other,6.1
|
||||||
|
1987,Africa,Botswana,Wine,0.2
|
||||||
|
1989,Americas,Guatemala,Beer,0.62
|
||||||
|
1985,Western Pacific,Lao People's Democratic Republic,Beer,0
|
||||||
|
1984,Eastern Mediterranean,Afghanistan,Other,0
|
||||||
|
1985,Western Pacific,Viet Nam,Spirits,0.05
|
||||||
|
1987,Africa,Guinea-Bissau,Wine,0.07
|
||||||
|
1984,Americas,Costa Rica,Wine,0.06
|
||||||
|
1989,Africa,Seychelles,Beer,2.23
|
||||||
|
1984,Europe,Norway,Spirits,1.62
|
||||||
|
1984,Africa,Kenya,Beer,1.08
|
||||||
|
1986,South-East Asia,Myanmar,Wine,0
|
||||||
|
1989,Americas,Costa Rica,Spirits,4.51
|
||||||
|
1984,Europe,Romania,Spirits,2.67
|
||||||
|
1984,Europe,Turkey,Beer,0.44
|
||||||
|
1985,Africa,Comoros,Other,
|
||||||
|
1984,Eastern Mediterranean,Tunisia,Other,0
|
||||||
|
1985,Europe,United Kingdom of Great Britain and Northern Ireland,Wine,1.36
|
||||||
|
1984,Eastern Mediterranean,Bahrain,Beer,2.22
|
||||||
|
1987,Western Pacific,Viet Nam,Beer,0.11
|
||||||
|
1986,Europe,Italy,Other,
|
||||||
|
1986,Africa,Sierra Leone,Other,4.48
|
||||||
|
1986,Western Pacific,Micronesia (Federated States of),Wine,0
|
||||||
|
1989,Africa,Mauritius,Beer,1.6
|
||||||
|
1985,Africa,Mauritania,Other,0
|
||||||
|
1986,Europe,Russian Federation,Wine,0.8
|
||||||
|
1985,Americas,Saint Kitts and Nevis,Spirits,2.24
|
||||||
|
1987,Eastern Mediterranean,Egypt,Beer,0.07
|
||||||
|
1986,Europe,Sweden,Beer,3.04
|
||||||
|
1987,Eastern Mediterranean,Qatar,Other,0
|
||||||
|
1987,Africa,Burkina Faso,Spirits,0.01
|
||||||
|
1987,Europe,Austria,Spirits,1.9
|
||||||
|
1986,Europe,Czech Republic,Beer,6.82
|
||||||
|
1984,Europe,Ukraine,Spirits,3.06
|
||||||
|
1984,Western Pacific,China,Wine,0.03
|
||||||
|
1985,Europe,Lithuania,Other,
|
||||||
|
1989,Africa,Zimbabwe,Beer,0.19
|
||||||
|
1987,Americas,Trinidad and Tobago,Spirits,2.26
|
||||||
|
1986,Americas,Mexico,Other,0.04
|
||||||
|
1987,Americas,Nicaragua,Beer,0.7
|
||||||
|
1986,Europe,Malta,Wine,1.49
|
||||||
|
1985,Europe,Switzerland,Other,0.3
|
||||||
|
1987,Europe,Finland,Beer,3.88
|
||||||
|
1986,Eastern Mediterranean,Saudi Arabia,Wine,0
|
||||||
|
1984,Eastern Mediterranean,Kuwait,Beer,0
|
||||||
|
1984,Americas,El Salvador,Spirits,1.81
|
||||||
|
1989,Americas,Suriname,Wine,0.04
|
||||||
|
1987,Western Pacific,Viet Nam,Wine,0
|
||||||
|
1989,Europe,Croatia,Wine,5.1
|
||||||
|
1984,Eastern Mediterranean,Somalia,Spirits,0
|
||||||
|
1989,Eastern Mediterranean,Syrian Arab Republic,Other,0
|
||||||
|
1987,Eastern Mediterranean,Iran (Islamic Republic of),Other,0
|
||||||
|
1984,Western Pacific,Papua New Guinea,Spirits,0.08
|
||||||
|
1987,Americas,Suriname,Other,0
|
||||||
|
1985,Eastern Mediterranean,Libya,Other,0
|
||||||
|
1989,Americas,Bolivia (Plurinational State of),Beer,1.26
|
||||||
|
1989,Eastern Mediterranean,Somalia,Beer,0
|
||||||
|
1987,Eastern Mediterranean,Iraq,Wine,0.01
|
||||||
|
1989,Africa,Namibia,Beer,0
|
||||||
|
1989,Africa,Uganda,Beer,0.12
|
||||||
|
1986,Africa,Togo,Spirits,0.42
|
||||||
|
1986,Africa,Madagascar,Spirits,1.02
|
||||||
|
1985,Africa,Mali,Other,0.57
|
||||||
|
1987,Africa,Mauritania,Other,0
|
||||||
|
1986,Eastern Mediterranean,Pakistan,Other,0.01
|
||||||
|
1986,Americas,Bolivia (Plurinational State of),Spirits,2.06
|
||||||
|
1989,Eastern Mediterranean,Afghanistan,Other,0
|
||||||
|
1985,Africa,Comoros,Beer,0.02
|
||||||
|
1985,Africa,Cameroon,Spirits,0.01
|
||||||
|
1989,Americas,Jamaica,Other,0
|
||||||
|
1989,Europe,Finland,Other,2.09
|
||||||
|
1985,Africa,Malawi,Other,0.84
|
||||||
|
1985,Europe,Netherlands,Wine,2.54
|
||||||
|
1987,Europe,Ireland,Spirits,2.25
|
||||||
|
1986,Europe,Ukraine,Other,
|
||||||
|
1986,South-East Asia,Sri Lanka,Other,0
|
||||||
|
1985,Africa,Democratic Republic of the Congo,Wine,0.01
|
||||||
|
1986,Americas,Bahamas,Wine,1.83
|
||||||
|
1989,Eastern Mediterranean,Iraq,Wine,0.01
|
||||||
|
1987,Eastern Mediterranean,Lebanon,Beer,0.42
|
||||||
|
1986,Eastern Mediterranean,Lebanon,Wine,0.7
|
||||||
|
1989,Africa,Malawi,Wine,0.01
|
||||||
|
1989,Europe,Bulgaria,Beer,4.43
|
||||||
|
1986,Africa,Eritrea,Spirits,0
|
||||||
|
1987,Africa,Madagascar,Other,
|
||||||
|
1985,Europe,Ukraine,Spirits,3.06
|
||||||
|
1984,Africa,Niger,Other,0
|
||||||
|
1985,Europe,Luxembourg,Wine,7.38
|
||||||
|
1984,South-East Asia,Indonesia,Wine,0
|
||||||
|
1984,Africa,Equatorial Guinea,Wine,0
|
||||||
|
1985,South-East Asia,Democratic People's Republic of Korea,Wine,0
|
|
Loading…
Reference in New Issue
Block a user